Annihilators of nilpotent elements
نویسنده
چکیده
For an element x of a ring R, let A (x), Ar(x), and A(x) denote, respectively, the left, right and two-sided annihilator of x in R. For a set X , we denote cardX by |X|; and say that a subset Y of X is large in X if |Y | = |X|. We prove that if x is any nilpotent element and I is any infinite ideal of R, then A(x) ∩ I is large in I , and in particular |A (x)| = |Ar(x)| = |A(x)| = |R|. The last result is applied to obtain a generalization of a result of Putcha and Yaqub [2] which shows that an infinite nonnil ring has infinitely many nonnilpotent elements. A short proof of their result is given in [1]. We prove a much stronger result showing that the set of nonnilpotent elements of a nonnil ring is at least as large as is its set of nilpotent elements. The following lemma is simple but crucial.
منابع مشابه
Annihilators of Artinian modules compatible with a Frobenius map
In this paper we consider Artinian modules over power series rings endowed with a Frobenius map. We describe a method for finding the set of all prime annihilators of submodules which are preserved by the given Frobenius map and on which the Frobenius map is not nilpotent. This extends the algorithm by Karl Schwede and the first author, which solved this problem for submodules of the injective ...
متن کاملFinite Groups With a Certain Number of Elements Pairwise Generating a Non-Nilpotent Subgroup
متن کامل
Nilpotent Elements in Skew Polynomial Rings
Letbe a ring with an endomorphism and an -derivationAntoine studied the structure of the set of nilpotent elements in Armendariz rings and introduced nil-Armendariz rings. In this paper we introduce and investigate the notion of nil--compatible rings. The class of nil--compatible rings are extended through various ring extensions and many classes of nil--compatible rings are constructed. We al...
متن کاملTransfer of Ideals and Quantization of Small Nilpotent Orbits
We introduce and study a transfer map between ideals of the universal enveloping algebras of two members of a reductive dual pair of Lie algebras. Its definition is motivated by the approach to the real Howe duality through the theory of Capelli identities. We prove that this map provides a lower bound on the annihilators of theta lifts of representations with a fixed annihilator ideal. We also...
متن کاملRings with Annihilator Chain Conditions and Right Distributive Rings
We prove that if a right distributive ring R, which has at least one completely prime ideal contained in the Jacobson radical, satisfies either a.c.c or d.c.c. on principal right annihilators, then the prime radical of R is the right singular ideal of R and is completely prime and nilpotent. These results generalize a theorem by Posner for right chain rings.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Int. J. Math. Mathematical Sciences
دوره 2005 شماره
صفحات -
تاریخ انتشار 2005